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I. Itroduction

Various optimum and sub-optimum filters have been added to the

basic generlized cross-correlator in order to enhance its detection and

estimation capabilities in the present of noise. An experimental compar-

ision of the optimum and sub-optimum filters was discu'ssed in Hassab and

Boucher[l . For the random nipnals, the optimum window W (w) which they
11

derived has the results of time-del.gy estimation considerably.

Basically, the solution consists of cross-correlatin." the

sensor outputs. The time ar.utiment that corresponds to the maximum peak

in the output is the time delay(Fig. i). In this report, time delay

estimation under several assumption,; about signals is obtained by averaging

the periodgrams of the datn segmentsC. 'When the signal is unknown, the

maximum entropy power spectrum estimation of Burg's algorithm is used to

estimate the signal power spectrum from the measurement of separated

sensors. The Aknike FPM( Final power error)criterion is also concerned in

deciding the order of AR model and signal & noise power spectrum estimation

of Burg's algorithm.

TI. Theory

Let the szi.sor output be the form
ZlI(t)=y(t)+n 1 (t)

Z ? (t):ay(t-T)÷n 2 (t)

where the signal y(t) and noises n (t),n2(Ware uncorrelated and jointly

stationary zero mean Gaussian random processes:over an observation, interval /%

Heretis the difference in arrival time or the time delay between the • .

two sensor elements. S, - "

In the aorrelator, the multiplier output is given by(2) 1.0
Z(w)Zp(w)'--a4~ eJ+4n (w)4 4(w) (.,.(w1 (w), ae"jw + 4nln w ' / ' :

where

/ 0.7
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where
q, yw)=lyCw)i2 ,On (nw).N , (w) N 2 w)

c (w)=Y*(w)N (w)+aY(w)e- JWTN1 *(w)

The lower case ý refers to a single realization of the.fmuction and the upper

case indicates its expected volue over the ensemble, i.e.< (w>O< (Y(w)MI= (w.)

The window Wii(w) derived by Hassab and Boucher ( 2 is based on the optimal

detection criterion of maximizing the ratio of mean correlator output due to

signal and noise present. The window function can be expressed in the simple

form as

or W1 1 (w)= (3b)

In1 (W).(w) + %(w)%( (w)+a2 j1(w)]+ a2,(w)

'With a finite number of samples, one spectral density entimate is the

periodogram. A good spectral estimate is obtained by averaging several

periodogram from segments, denoted as M, that provides the best spectral

density estimate and the time-delay estimateý.

For deterministic signalsthe resulting optimum filters are in

terms of signal and noise spectral densities.

W I(w)= 2(4a(w))

kl~w 2(w)+ ý(w)(,i (w)+a

or W (w)= (w)(
-k1(w)k2(w)-a2•()(b

the difference between W and WII is due to the variance a 21y2 of the signal

which is negligible for small a and/or low signal-to-noise spectra,



Otherwise, both filters are simil!r where the first term within brackets

in the denominator is due to •n1tl1(w) ,qnd the second term ý (w). Hassab and

Boucher(43 have examined the behavior of every window in the presence of a strong

spectral peak in y (w). With a no noise case WI(w) is undefined and Wii(w) is

reduced to. w The expected generlized cor-relntor output becomes

Zl(W)I2(w)= a(w)e-jwwr

divided by -(w)(since the window W1 (wo="------) theh , we get the term of eW

the time delay estimation. Hence in this caseywe use W (w) to process the signal

of sinus~id ai,',

In the cnse of signal unknown Burg's method is used to estimate the (W),

S{)andz2(w).

MAXIMUM ENTROPY SPECTRUM ESTIMATION: Burg's Algorithm

The mnximum entropy m-thod(NEM) using the Burg's algorithm was applied by

Ulryoh(5i,who showed the re;nnrnble resolution properties of this approach. In

applying the conoept of maximum entropy to spectral analysis (6] we begin with the

relationship between the entropy(strictly speaking, the entropy rate for an infinite

proaess) and the speetrul density S(f) of a stationary Gaussian process,
f h!

H - log s(f)di• - . (5)
4 f" "N

where fN is the Nyquist f!.equency.

Rewritting (5) in terms of the autocorrelation kk) of the process gives

f
((6

- log~f ý(kexp(-2j -T fk.&tidf (6)

whereat is-the uniform snmpling rnte. MAximizing (6) with respect to the unknown

q(k) with the aonstraint that S(O) must also be consistent with the known auto-

correlations ý(O),(I),...., 4(m-1) results in the MkI spectral estimate.

This estimate expresses maximum uncertainty with respect to the unknown

information but is consistent with the known information. The variational procedure



The estimate expresses maximum uncertainty with respect to the unknown information

but is consistent with the known information. The variational procedure leads to the C,

expression for the MEI s;pentral densityL6], [ 7, which for n renl linenr process x( )

is P

L MA t2
fN I 1+7ri exp(-j2flfiAt)2

where P is a constant and r. are prediction error coefficients that are determinedN1
from the data.

The chief shortcoming of the MEN spectral estimates has been the lack of a

quantitative mcLhod of determing the length of the prediction error filter r(t)

in (7). Recent work of AR processes appears to overcome this problem.

The algorithm of Burg's method is considered a wide-sense stationary Gaussian

process x(t) of zero mean and duration T seconds. The detail of this algorithm is ivA

reference LAI

III. Experimental Study

(A) Signal known:

Thel.randbm sign8l is generated by passing white noise through a recursive

filter with the impulse response Bnexp(-bn). The Gaussian white noise at the oulputs

of two sensors are independent and have been generated by Monte Carlo's method. An

implementation of the generlized correlator is executed fhr each set of 128 data

points obtained from the spnsor outputs. The time delay between the sensor elements

is arbitrary and is selected as 16 & 10 units with (lifferent case. Here to compare

the time delay results from different signal-to-noise ratios and to determine the

optimum M.

When the signal y(t) is random with known statistics plus the Gaussian

noise with zero mean and variance , the signnl-to-noise ratios of -lOdB,OdB,and

10dB are cho3en with results given in Figs. 2-4 with B=3.33,'=16. Figs.7-11 with

B=17,T*=10.

The sinusoidal signal y(t) is known and plus the Gaussian noise, we have

the results shown in Figs. V12- 14.

- ~ ___________



(B) Signal unknown:

From tho parameter estimatorL81 which with the addition of noise in

the output of the AR model~is

Z(n)--y(n)+n(n•)

Hence, the model for th• sinusoids, in white noise problem contains

poles arnd zeros. In using AR r;nrameter estimation methods that essume all-

pole model is difficiltt.f1]1O It is well known that the least squares

estimateof coefficient is biased in this case, and the bins is caused by

the expected vlue of' C'A .• 0 ( WrnZ±• ). Corresponding, ta the FPE we can

get §(w) by substractinr •(w) with FPE.

(n) ' y(n) U(n) Z(n)

White noise Wavelet White noisWve

nI(n)

(a) AR model White Gaussian noise
(b) ARMA model

Blo:k diagram (a) AR model (b) ARMA Model

Then, use this power spectrum as the window parameter of Hassab &

Boucher optimum window;, and we can estimate the time delay.from a generlized

correlator.

Similar to the known signal case when y(t) is random with iiflknown

statistics plus the Gaussian noise with zero mean arid variance, the signal-to-

noise ratios of -lOdM,(OdB,and 10dB are chose-n with results given in Figs. I -9

with B--.3.,y=10. In Figs.n.01with B-17 ,t=I0.

The sinusoida] signaol y(t) is unknown and plus tne unknown white

Gaussian noise, we have the results shown in Figs. 25"-27 ,withC-.n!6.

... , -.... ..



IV. Summary

The time delay estimation from cross-correlator without window exhibits

a thresholding effect as the signal-to-noise ratio decreases. In which we get the

false peak.[113

After using the window and averaging the periodgrams of the data segments

the thresholdinf- effect crin be avoide then the mnximum 11 is chose. The unknown

signal case before we compute the k(w) the Akaike FPE criterion must be used to

decide the order of the prediction error filter coefficients.(Seo Table 1.)

The relation of SNR and M can be found in Fig.21 from the Fig. we found

M is increased when SNR is decreased.

In the random signal ca:;e B=". % and B-17 ar- abosP4 Here we can find

b=1? has the small power comnarekto B.--3.33 and the small P(=?) is enough to

detect the time-delnv with SNR7-3OdB.

The key of time delay ctimation of Whknown signal is the estimation of

ýy(w), TZ 1 (w), nnd Z2z(w). If we can estimate the power spectrum of y(t) from

the sensor: outputs, then we must have a fgood estimate using the above method.
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Figure Captions

Fig. 1 Block dinfrram or the gFrlralized crogs-corrPlatur.
Fig. ?n Without window outpuit for M-1, -16, 311R=10dH,the result of time-delay =16.
Fig. 2b window function of W (w), for M=1 ,tr=16, SN?=1(Idb.
Fig. 2c With window of W (w 1 r16, the result of time-delay =16.
Fig. 3a Without window ol'Aput for-t=16, SN1=OdB, P=1, the result of time-delay =10.
Fig. 3b Window function of WrI(w), for -I ,T=16, SNP=OdB.
Fig. 3c With window of W (w), for M=1,T=16, SNR=OdB,the r-sult of time-delay =13.
Fig. 4C The Pame as Fig.-c,but M=5, the result of time-delay -13.
Fig. 4b The same as Fig. 3c, but M=7, the result of time-delay =16.
Fig. 5a Without window outrnt for =16,M-71,SNR=1-IdB, the result of time-delay =-6.
Fig. 5b Window function of W ' (w), for M=IT=16, SNV=-lOdB.
FiR. 5c With window of W (v1 , ! i:1,6NR=-1OdB, 1=16, the result of T=13.
Fig. 6a With:' window ou rut for 1,1=7, ;NR=-1OdB,the result of time-delay =12.
Fig. 6b With window for M=15, SNR=-IOdB, the result of time-delay =13.
Fig. 6c With window for M=20, SNR=--1OdB, the result of time-delay *14.
Fig. 7a Without window Bn17. T=10, ,1iNR=1OdB,M-I, the result of time-delay =10.
Fig. 7b With window BrI7?., 1[=1jn,SNR=10,M=1,the result of time delay =10.
Fig. 8a Without window,for B=17, IJR-O0dB, =10,•=1,the reulIt of time-delay =1G.
Fig. 8b '$iWith window for B-17., )NR-7OdB1,T=10,M=l,the result of time delay =10.
Fig. 9a Without window ,for 8=17, SPNR=-10d13, =1O, the result of time-delay =15.
Fig. 9b With window for 1-17, SNN=-1()dI•, =10, M=1, the result of time-delay =10.
Fig. 10a Without window B-l1, ý,NPr-?Odbj=1,,-=10, the result of time-delay =13.
Fig. 10b With window B=17, SNH=-2OdB, t. T=10,the result of time-delay =13.
Fig. 10c With window B=17, SNR=-2OdB, M%5, T=i1, the result of time delay =10.
Fig. 11a Without window B=17, SNR=-3OdB, M=7, t=10, the result of time delay =22.
Fig. 1?a Without window sine wave f-ir M=1,SNR=5dB, t-i6, the result of time delay =16.
Fig. 1?b With window sine wave for M=1, SNR=5dB,T=16, the result of time delay =16.
Fig. 13a, Without window sine wave for M.1, SNR=-SdB,T=16, the result of time delay =11..
Fig. 13b With window of sine wave fnrM" =1, SNR=-5dB,T=16, the result of time delay =1?.
Fig. 14a Without window of sinp wave for M=1,SNR=-1SdB,T=16, the result of time delay

=-20.
Fig. 14o With window of sine wave for M=20, SNR=-I5dcB,'i[=16, the result of time delay

=12.
Fig. 15a Without window output signal unknown for B=3.33,M=1,Z=16,SNR=lOdB', the time-

delay =16.
Fig. 15b Window function of W (w), for 3=3.3i5,dNR=10db, T=16.
Fi.. 15c With window of WTj (w) for B=3-.33,SNR=OdB, t=6, the time delay =16.
Fig. 16a Without window ouput:ibf B-.333, SNR=OdB, T=16,(unknown signal), the result

of time deloy =15. M-71.
Fig. 16b Windnw function of W (w),for B=35,3, SNRPOdB, T=16,(unknown signal),'M=l.
Fig. 16c With window of W (w'frr i3=3.35, 3NR,0dF, T-=16,(unknown signal), the result

of time delay = i ,M-l.

Fig. 17a Without window output with unknown signal, for B=3.33,SNR=OdB; 1T=16, the
result of time delay =15,M=5.

Fig. 17b The same as 17.a but M=i, the result of time delay =15.

Fi1. 17c The same as I7*.a&b ,but M=7, the result of time delay =1i.

Fig. 18a Without window of unknown signal b!3t.35,SNR=-10d]3,'t=16, M=1, the result of
time delay =-6.

Fig. 1A b Window function of W.G(w) B., •,8N1•=-10dB -16,f1-I, unknown signal.
Fig. 1Pc With window of W (w) 1=3.•.35,SR=-1OdB, =16,Hk1, the result of time delay

--11.



Fig. 19a' With window ,the same as 1P-c, but M-7, the- result of time delayt=11.

Fig. 19b The snme nn 19-a, but M=1 15, the result of time delqy-=14.

Fig. 20a Without window of unknown signnl for B-17.,G'N1R=1OdBI'3=1O, M=I, the result
of time delayr=1lO.

Fig. 20b With window of unknown signal for B-17,NR-I1OdB,Tt-1O,H=1, the result of
time delay -1-O.

Fig. 21U Without window of unknown signal, for B=1V, SNR-OdB,--O, M?1, the result
of time delaeyr1-O.

Fig. 21b With window of unknown signal, for B1-17, SNR=Odb,7=1O,H+1, the result of
time delayT=1O.

Fig. 22a Without window of unknown signal, for B=17., SNR=-IOdB, M=1, the result
of time delayT'C13.

Fig. 22b With window of unknown signal, for B=17, SNR=-1OdB,7=1O., the result of
time delyT-=10, M=3.

Fig.. ?3a Without window of unknown signal, for B=17, SNR--?OdB,T=1O,M=I, the result
of time delay7%=15.

Fig. 23b With window of unknown signal, for B=17, 8UIR=-2OdB, =1O ,M=1, the result of
time delay =10.

Fig. 24a Without window of unknown signal for B=17, SNiR--30dB,T =1O, M=1, the result
of time delnyT=-6.

Fig. 24b Without window of unknown signal for B=17, SNR=-3OdB,7=1O, M=7, the result
of time delay*=?22.

Fig. 24c With window of unknown signal for B=17, SNR=-3OdB, T=10, M=7, the result of
time delnyT =1P.

Fig. 25a Without window of sine wave of unknown signal, for-7=16,M=1, the result of
time delay-7=16. SNR-qdB.

Fig. 25b With window of sinte wave of unknown signal, for-r=16, M1, the result of
time delny =16. SNIR=5dB.

Fig. 26a With window of unknown signal. M=1, the result of time delayT=15.
(without window case in the some as Fig.12a.) (6NR=---dB).

Fig. 26b With window M=3, the result of time delayr=16. (SNR:-5dB)

Fig. 27a With window for SNR=-15db,7=16,J=3, the result of time delayT=14.

Fig. 27b Without window for SNR--15dB,M=53,'r*16, the result of time delay•'=12.
Fig. 28 The relationship of random signml case(btexp(-Bt).(known signal)

Note: Fig.O is the rnndom nignnl ca& with BH=.33 and signal i.s known.
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Reference A

(A) Burg's Recursive Algorithm

Let X(t) denote a -;ample function of this process, which is s8,mpled

uniformly at the rate i/T to produce a time series consisting of N samples,as

shown by

Vnt ý MXP .......... ()Al
where X(n) denotes the nth sample of the aeries.

The autocorrelation Lunction of the time series X(n) for a time

lag of mT seconds and time index n is defined by

Rx X(n,m)= F ((n,m) X'(n)1 (AP)

where E[ Jdenotes the expectation, and the asterisk denotes the complex

conjugnte operation, With the raiidom p•rocess X(t) nssumeri widp-sqnse stationary,

the autocorrelation function RX(nm) dependent only on the time lag mTs, as shown

by

Rx(n, m)=RX(M) (Ai)

Also, the autocorrelation function exhibits conjugate symmetry, i., I (m) is

a H.rmitian function

(AtRx(-m)=R!(m) ( Alt

Suppose that the time seriesl X(n)l is applied to a linear digital filter of

impulse response th(n)} of order P. Tho filter produces an output time series

y,(n) that is designed to approximate a desired time series td(61) nzs shown

in Yigzure Al. and the resultant error time series is

e(n)=d(n)-y(n) (A.5)

X(n) h ( Y(n) e(n)

Fip. Al d(n)



.7

For a special case of a filter designed to predict the value of a

random process X(t), one timp unit nhead by using the present and past valuEs

of the time series X(n), i.e.

d(n)=X(n+l)

A prediction-error filter is introduced. Fig. A2 shows the functional

relationship between the linear prediction filter, charaaterized by the impulse

response th(n)ý, and the prediction filter, characterized by the impilse response

X (n) .... Linear Predictive Filter X(n+l) Unit X(n)

11 (n) +

Prediction Error Filter

X(n) -01 (n) >. E(n)

Fig.AP : ilu•;tratini the re[-tioriship between
the predictive filter and prediction-error filter

The prediction-error filter equation expressed in matrix form in given

by C121

R A(0) Rx(OJ) ............."R JX (-M) M 1(

Rxi) R (0) *.@....... R x(2-M) W~I 0

(A6)

(M-x)R)C(m-2): ........... RX(o) W ( 0



where
IA -X

K=O

is the prediction-error power

A recursive algorithm developed by Burg p 131 for solving the set of prediction-

error filter equation is availible.

Suppose that we know the solution to the set of p equations pertaining to

a prediction filter of order p, as shown by (46). We cnn take the complex conjugate

of bor-h sides of (A6) and recognize that

(1) The prediction-error power PM i a rp] quantity

(2) The autocorrelation matrix is ltermitian,i.e.

We thiur obtain

* I-x(-1) Rx(0) ........" R (m-p) w*•- (I.)':-

* (A7)

R.,, (1-M) Rx (2_-M).* ...... H X(0) /W•i_ 1 (M-•

(AW) can be rearranged as

Rx(0) X(-1) ......... i A (1-FI) W16 (m.-I) 0

R (I) R (0) R (2-MM1 #(-P) 0

"(A8

(A6) pertains to a prediction-error filter of order p operated (NM)



in the f£rward direction.. On the other hWnd, (nf) perLant- to n prediction-

error filter of the snrm'e order except that is operfited in the backward

dire,=tion. This is illustrmted in Fig. A3

(1) ,X(G.), ....... ,X(N) - ; . ! '" (1) ............ , ,O t- .)/

x(l),X(2) ...... ,x(1)0 , ) 0/-".............................. ...................

(h)

Fig.A3: [lluntr',tinw' (a) forw~ird and (h) hackward
prediction error filterinp

Combining (A6) and (A8) to expand the number of prediction error filter

equations by one is as follows:

NxO X X (-1 ) ...... R~~-: X×-M X• 0
R ((1) R (0) .. .. (2-l'.) H.. ( -i~i (I-I W* (1)

X A

ii (m) ........ R (o) (1) N-1(,1)0,

RX(m) RX (m,--I ...... RX(1) (0) I

PM ~r.

() 0

m (AO)

IJ

- .w11 (H

C)•4 F

£i



ffowev.'r, for the acnrre.spondi~nr rprd'1icti.o--n-trror filter of ordier (m+l) we

have

R x(0) RX(-1) R,( (1-10 R (-ii) 1p M

Rx( i) R (0) ..... RX( P--h) ( 14) W M~ IMo

RM1 x~(-).. (0) R (-1) W N(M-1)

R X(M) ixM-1)a... RX (i) RX(o) W1 (N) 0

Gom~pnringý with ( A9) a~lld ('lo) , weŽ de.,juje thial:

4 W=) W (Y)' W (m) W (N-K) ;K=() 1....;7r)(Al

P p 4 W (A12)
and

0=4"+ w -Jp(A13)

In the recursive Formunit of* (GOO, note tha~t for all vaflues of 1-

for K=0

M 0 for KŽM

(103~) will always hen ai solution pr'ovided thent P M thIIus i Isinrp. (Al ) to

Pimin-rteA from (Al?),wo get

p M+V 1W Mi. IW(11)f'

B3y analogy with the- trannsmissiort of power through n termlinnted two-port

network, we mmy vicew W (!'i~as a "reflect~ion coefficienOt.



GOM PUT'AT1ONAL PIUCJWURIý

Summnrizi.ng the steps in the recursive procedure involved in

calculating the prediction-error filter coefficients and relnted values

of the spectral density and autocorrelation function, they nre

(I) For thegiven time series X(n) , n=,2,? ...... N Pnd M=O.

Calculate the power

N

Z X(n) X(n)

and calculate the reflection coefficient and the prediction-error

power by

-X(n) X(n+1)

A(n) I+(n'"8

(2) Increainent N by 1, anIi calculate the next vnlues:

Pn) (n) + W 1(M) qtl_1 (rl)

qM(n)=qý,_1(n+1) + WM(M) PMi(n+1)

where

P (n). X(n)

qo(n)= X(n+l)

(3) Calculate the refle in coefficient

W (M ) -- -- - -- - -- - -- -

MN -

-2 • i•'l1(.)ql•_(n)
lipM) (n +-Mj



and the corresponding value of the error prediction power

M+1 MN ljWMM)1 2

(14) Calculate the rerimaining coefficients of the prediction error filter

by

W M(K) = W MI(K) + W F (F) WM. (M-K) ; h=I,2,...,!K-1

(5) Repaht steps (P) to (4) for epch vnlue of M up to the optimum value

p(=M) for which the final prediction-error

( -•4 M+ )
(YPL) . PM+1

( N-N- I)

is a minimum.

(6) We now have all the qyiantities required for calcuation the extrapolated

vnlue of the autocorrelation function.

rV ,-Ix ~M M-
ýý = I

erid for calculating:: the spectrsl density estimate

SM+ 1
Sx(f) = X 12

2B 1 1+1 WN(K) exp'(-2ITk-tT)

where T is the sampling period and X(t) is the band-limited to -B,B.s

When the process X(t) is sampled at the Nyquist rate, we have T=i/2B

The computation is thereby completed.
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